Pedal Triangles and a Fundamental Result

David Hornbeck

November 28, 2013

Given any triangle $\triangle A B C$ and a point P, the pedal triangle is the triangle with vertices at the intersections of the lines through P and perpendiculars to $\overline{A B}, \overline{A C}, \& \overline{B C}$. The pedal triangle can be inside or outside of $\triangle A B C$ depending on the position of P.

Figure 1: $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the pedal triangle of $\triangle A B C$ with pedal point P.
We are going to prove that the pedal triangle of the pedal triangle of the pedal triangle of a triangle is similar to the original triangle. We will extend and shift our diagram above:

We first claim that the pedal point P lies on the circumcircle of the following triangles:

$$
\triangle A B^{\prime} C^{\prime}, \triangle A^{\prime} B^{\prime} C, \triangle A^{\prime} B C^{\prime}, \triangle B^{\prime} H J^{\prime}, \triangle C^{\prime} H I, \triangle A^{\prime} J I, \triangle I L M, \triangle H K L, \triangle J K M
$$

As the proofs of each of these are similar, we will here only justify for $\triangle A^{\prime} B^{\prime} C, W L O G$.
Claim: P is on the circumcircle of $\triangle A^{\prime} B^{\prime} C$.
Proof: Construct the unique diameter of the circumcircle with one endpoint C. Let the other endpoint be D. Then $\angle D A^{\prime} C=90^{\circ}$ and hence $\overline{D A^{\prime}} \perp \overline{A^{\prime} C}$. Similarly, $\angle D B^{\prime} C=90^{\circ}$ and $\overline{D B^{\prime}} \perp \overline{B^{\prime} C}$. There is only one point D such that $\overline{D A^{\prime}} \perp \overline{A^{\prime} C}$ and $\overline{D B^{\prime}} \perp \overline{B^{\prime} C}$, though, and by definition and construction of the pedal triangle points $A^{\prime} \& B^{\prime}, P$ is this point.

Let us now construct segments $\overline{A P}, \overline{B P}, \overline{C P}$. Then by the fact that angles that subtend the same arcs are congruent (and by the renaming of angles) [see Figure 2], we have

$$
\begin{gathered}
\angle M K P \cong \angle M J P \cong \angle I J P \cong \angle I A^{\prime} P \cong \angle C^{\prime} A^{\prime} P \cong \angle C^{\prime} B^{\prime} P \cong \angle A B P \\
\angle L K P \cong \angle L H P \cong \angle I H P \cong \angle I C^{\prime} P \cong \angle A^{\prime} C^{\prime} P \cong \angle A^{\prime} B^{\prime} P \cong \angle C B P \\
\Rightarrow m \angle M K L=m \angle M K P+m \angle L K P=m \angle A B P+m \angle C B P=m \angle A B C
\end{gathered}
$$

Similarly, $\angle M L K \cong \angle A C B, \angle L M K \cong \angle B A C$.
Thus, by AAA Similarity, $\triangle M K L \cong \triangle A B C$.

Figure 2: All of the circumcircles constructed.

